
Optimal Social Laws

Thomas Ågotnes
∗

Dept of Information Science and Media Studies
University of Bergen

PB. 7802, 5020 Bergen
Norway

thomas.agotnes@infomedia.uib.no

Michael Wooldridge
Dept of Computer Science

University of Liverpool
Liverpool L69 7ZF

UK
mjw@liv.ac.uk

ABSTRACT
Social laws have proved to be a powerful and theoretically elegant
framework for coordination in multi-agent systems. Most existing
models of social laws assume that a designer is attempting to pro-
duce a set of constraints on agent behaviour which will ensure that
some single overall desirable objective is achieved. However, this
represents a gross simplification of the typical situation, where a
designer may have multiple (possibly conflicting) objectives, with
different priorities. Moreover, social laws, as well as bringing ben-
efits, also have implementation costs: imposing a social law often
cannot be done at zero cost. We present a model of social laws
that reflects this reality: it takes into account both the fact that the
designer of a social law may have multiple differently valued ob-
jectives, and that the implementation of a social law is not cost-
neutral. In this setting, designing a social law becomes an optimi-
sation problem, in which a designer must take into account both
the benefits and costs of a social law. We investigate the issue of
representing a designer’s objectives, characterise the complexity of
the optimal social law design problem, and consider possible con-
straints that lead to reductions in computational complexity. We
then show how the problem of designing an optimal social law can
be formulated as an integer linear program.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
social laws, normative systems, logic, optimisation, complexity

1. INTRODUCTION
Social laws, or normative systems, have proved to be an attractive
approach to coordination in multi-agent systems [13, 15, 1, 3, 4].
The basic idea is to manage a social system by placing restrictions
on the activities of the agents within the system; the purpose of

∗Also affiliated with Bergen University College.

Cite as: Optimal Social Laws, Thomas Ågotnes and Michael Wooldridge,
Proc. of 9th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck and Sen
(eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

these restrictions is typically to prevent some destructive interac-
tion from taking place, or to facilitate some positive interaction. In
the original framework of Shoham and Tennenholtz [13], the aim
of a social law was to restrict the activities of agents so as to en-
sure that individual agents were not prevented from accomplishing
their personal goals. In [15], this idea was generalised to allow for
the objective of a social law (i.e, what the designer intends to ac-
complish with the social law) to be specified as a logical formula.
Variations on the same theme have subsequently been explored in a
number of papers, e.g., [1, 2]. While these frameworks have proved
to be powerful and valuable as a means to explore the computa-
tional aspects of social laws in particular, they suffer from several
key limiting factors:

• First, it is typically assumed that a social law can be imposed
at no cost. In most real systems, of course, this is completely
unrealistic: different social laws will vary wildly in the cost
of their implementation, and this will be a key factor in as-
sessing the relative merits of different social laws.

• Second, it is typically assumed that the designer of a social
law has a single overall objective to be achieved, or that if
a designer has multiple goals, then these are of equal value.
Again, this seems unrealistic in many real-world settings.

Our aim in this paper is to develop and investigate a model of social
laws which allows for both the fact that different social laws have
different implementation costs, and that the designer of a social law
may have multiple differently valued objectives. In this setting, the
design of social laws is an optimisation problem, where we must
take into account both the benefits and costs of different possible
social laws: the aim is to find an optimal social law.

In the next section we briefly review the models and other for-
malisms we employ in the paper: systems are modelled using Kripke
structures; social laws are modelled as restrictions on such struc-
tures; and Computation Tree Logic (CTL) is used to express prop-
erties of such structures. We augment Kripke structures with costs
on edges in order to model the cost of implementing social laws. In
Section 3 we introduce models of the utility of a normative system
on the basis of costs and benefits. In particular, we use a weighted
formulas representation, in the style of marginal contribution nets
and related formalisms [8, 9, 14, 6, 14], in order to be able to rep-
resent different designer objectives and their values compactly. In
Section 4 we characterise the complexity of the optimal social law
design problem. The problem is, in general, computationally hard.
We consider this from two angles. First, we look at possible con-
straints that lead to reductions in computational complexity. Sec-
ond, in Section 5, we look at a way to solve the (general) problem
in practice: integer programming. Integer programming is one of
the most successful and widely-used approaches to solving compu-
tationally hard optimisation problems. We show how the problem

667

667-674

of designing an optimal social law can be formulated as an integer
program.

2. THE FORMAL FRAMEWORK
The model of social laws we use here is that of [15, 1]; we give
a complete but terse summary of the model, referring to the above
cited papers for more details.

Weighted Kripke Structures: We use weighted Kripke structures
as our semantic model for multi-agent systems, which extend con-
ventional Kripke structures for branching-time temporal logic (see,
e.g., [7]), with costs. A conventional Kripke structure over a set of
Boolean variables Φ is a structure 〈S, s0, R, π〉, where S is a set of
states, s0 ∈ S is the initial state, R ⊆ S × S is a binary transition
relation on S, and π : S → 2Φ is a labelling function, associat-
ing with each state in S the set of Boolean variables that are true
in that state. We extend these models first with a set A of agents,
and a function α : R → A, which associates an agent with each
transition in R. Intuitively, if we think of an edge (s, s′) ∈ R as
corresponding to an action that transforms state s into state s′, then
α(s, s′) is the agent that performs the action. Finally, we add a cost
function, c : R → R+ (where R+ is the non-negative real num-
bers), which associates a numeric cost with every transition in the
Kripke structure. The intuition is that the cost c(s, s′) of an edge
(s, s′) represents how much it would cost to remove the edge. We
do not demand a single interpretation for such costs, but several are
possible:

• First, we can interpret a cost c(s, s′) as representing how
much it would cost to engineer out the transition (s, s′), i.e.,
how much it would cost to re-engineer the system so that
(s, s′) was no longer present.

• Second, we could interpret the cost c(s, s′) as representing
how much it would cost to “police” the system to ensure that
the transition (s, s′) was never enacted.

However, we emphasise again that no specific interpretation is re-
quired for the purposes of this paper: we simply assume the cost
function c is given as part of a weighted Kripke structure.

Formally, a weighted Kripke structure (over Φ) is a 7-tuple K =
〈S, s0, R, A, α, c, π〉 where:

• S is a finite, non-empty set of states;

• s0 ∈ S is the initial state;

• R ⊆ S × S is a total (i.e., for every s ∈ S there is a t ∈ S
such that (s, t) ∈ R) relation on S, which we refer to as the
transition relation;

• A = {1, . . . , n} is a set of agents;

• α : R → A labels each transition in R with an agent;

• c : R → R+ is a cost function; and

• π : S → 2Φ is a valuation function.

In the interests of brevity, we shall sometimes refer to a weighted
Kripke structure simply as a Kripke structure. Where R is a transi-
tion relation and s is a state, let next(s, R) = {s′ : (s, s′) ∈ R}. Let
rch(s, R) denote the set of states reachable from state s in transition
relation R, i.e., rch(s, R) = next(s, R∗) where R∗ is the reflexive
transitive closure of R. When R is clear from context, we simplify
notation and write next(s) and rch(s). A path over a transition re-
lation R is an infinite sequence of states τ = s0, s1, . . . which must
satisfy the property that ∀u ∈ N: su+1 ∈ next(su). If u ∈ N, then
we denote by τ [u] the component indexed by u in τ (thus τ [0] de-
notes the first element, τ [1] the second, and so on). A path τ such
that τ [0] = s is an s-path. Let pathsR(s) denote the set of s-paths

over R; we often omit reference to R, and simply write paths(s).
We will refer to and think of an s-path as a possible computation,
or system evolution, from s.

In the following we will frequently treat weighted Kripke struc-
tures as conventional Kripke structures; obviously, this is done by
disregarding the additional components. For example, we presently
define the notion of bisimilar Kripke structures, and this notion also
applies to weighted structures by viewing them as conventional.

A bisimulation relation between two (conventional) Kripke struc-
tures K = 〈S, s0, R, π〉 and K′ = 〈S′, s′0, R′, π′〉 is a binary relation
Z ⊆ S×S′ such that for all s and s′ such that sZs′, (i) π(s) = π′(s′),
(ii) for any s1 such that sRs1 there is a s′1 such that s′R′s′1 and s1Zs′1
and (iii) for any s′1 such that s′R′s′1 there is a s1 such that sRs1 and
s1Zs′1. Two structures are bisimulation equivalent, K ≡ K′, if there
exists a bisimulation relation Z between K and K′ such that s0Zs′0.

Computation Tree Logic (CTL): CTL is a branching time tempo-
ral logic intended for representing the properties of Kripke struc-
tures [7]; since CTL is widely documented in the literature, our
presentation will be somewhat terse. The syntax of CTL is defined
by the following BNF grammar, where p ∈ Φ:

ϕ ::= � | p | ¬ϕ | ϕ ∨ ϕ | E �ϕ | E(ϕU ϕ) | A �ϕ | A(ϕU ϕ)

The semantics of CTL are given with respect to the satisfaction
relation “|=”, which holds between pairs of the form K, s, (where
K is a Kripke structure and s is a state in K), and formulae:

K, s |= �;

K, s |= p iff p ∈ π(s) (where p ∈ Φ);

K, s |= ¬ϕ iff not K, s |= ϕ;

K, s |= ϕ ∨ ψ iff K, s |= ϕ or K, s |= ψ;

K, s |= A �ϕ iff ∀τ ∈ paths(s) : K, τ [1] |= ϕ;

K, s |= E �ϕ iff ∃τ ∈ paths(s) : K, τ [1] |= ϕ;

K, s |= A(ϕU ψ) iff ∀τ ∈ paths(s),∃u ∈ N, s.t. K, τ [u] |=
ψ and ∀v, (0 ≤ v < u) : K, τ [v] |= ϕ

K, s |= E(ϕU ψ) iff ∃τ ∈ paths(s),∃u ∈ N, s.t. K, τ [u] |=
ψ and ∀v, (0 ≤ v < u) : K, τ [v] |= ϕ

The remaining classical logic connectives (“∧”, “→”, “↔”) are
assumed to be defined as abbreviations in terms of ¬,∨, in the con-
ventional manner. The remaining CTL temporal operators are de-
fined: A♦ϕ ≡ A(�U ϕ); E♦ϕ ≡ E(�U ϕ); A ϕ ≡ ¬E♦¬ϕ;

E ϕ ≡ ¬A♦¬ϕ.
We say ϕ is satisfiable if K, s |= ϕ for some Kripke structure K

and state s in K; ϕ is valid if K, s |= ϕ for all Kripke structures
K and states s in K. The problem of checking whether K, s |=
ϕ for given K, s, ϕ (model checking) can be done in deterministic
polynomial time, while checking whether a given ϕ is satisfiable or
whether ϕ is valid is EXPTIME-complete [7]. We write K |= ϕ if
K, s0 |= ϕ, and |= ϕ if K |= ϕ for all K.

Expressiveness of CTL is characterised by bisimulation equiva-
lence: for any K, K′, K ≡ K′ iff for all ϕ, K |= ϕ iff K′ |= ϕ
[5] (note that, unlike for many other modal logics, the implication
holds in both directions here).

Social Laws: For our purposes, a social law, or a normative sys-
tem, is simply a set of constraints on the behaviour of agents in a
system [1]. More precisely, a social law defines, for every pos-
sible system transition, whether or not that transition is consid-
ered to be legal. Formally, a social law η (w.r.t. a Kripke struc-
ture K = 〈S, s0, R, A, α, c, π〉) is a subset of R, such that R \ η
is a total relation. The latter is a reasonableness constraint: it

668

prevents social laws which lead to states with no successor. Let
N(R) = {η : (η ⊆ R) and (R \ η is total)} be the set of social
laws over R. The intended interpretation of a social law η is that
(s, s′) ∈ η means transition (s, s′) is forbidden in the context of η;
hence R \ η denotes the legal transitions of η.

Implementing Social Laws: The effect of implementing a social
law on a Kripke structure is to eliminate from it all transitions that
are forbidden according to this social law (see [15, 1]). If K is a
Kripke structure, and η is a social law over K, then K†η denotes the
Kripke structure obtained from K by deleting transitions forbidden
in η. Formally, if K = 〈S, s0, R, A, α, c, π〉, and η ∈ N(R), then K †
η = K′ is the Kripke structure K′ = 〈S, s0, R′, A, α, c, π〉 such that

R′ = R \ η and all other components are as in K. We denote by K̂
the set of Kripke structures that may be obtained by implementing
some social law on K, i.e.,

K̂ = {〈S, s0, R′, A, α, c, π〉 : R′ ⊆ R and R′
is total}.

3. OPTIMAL SOCIAL LAWS
The aim of the designer of a social law will typically be to optimise
the system in some way. For example, the designer may wish to
ensure that certain undesirable situations never arise in the system,
or that certain positive situations do arise. We can think about the
preferences of a social law designer over a given system K as be-
ing captured by a valuation function, which gives a value of every
possible sub-system of K:

v : K̂ → R+.

However, while social laws may bring benefits (in terms of the de-
sirable properties they bring about), they also have costs, as cap-
tured in the cost function c. The utility of a social law η with respect
to a Kripke structure K and valuation function v, which we denote
by u(η, K, v), is then the difference between the value brought by
the social law and the cost of implementing it:

u(η, K, v) = v(K † η)
| {z }

benefit

−
X

(s,s′)∈η

c(s, s′)

| {z }

cost

.

From the point of view of a designer with valuation function v, the
optimal social law η∗(K, v) with respect to Kripke structure K and
valuation function v will be one that maximises the value of the
function u (if there are several maximising systems we let η∗ chose
arbitrarily among them) :

η∗(K, v) = arg max
η∈N(R)

u(η, K, v).

The OPTIMAL SOCIAL LAW problem is the problem of computing
η∗(K, v) – notice that this is a function problem, not a decision
problem.

3.1 Feature Sets for Valuation Functions
A key issue from a computational perspective is that of representing
a valuation function v. The “obvious” representation of a function
v is as a set of input/output pairs, i.e., we represent v via the set
{(K † η, v(K † η)) : η ∈ N(R)}. The problem with this represen-
tation is that the number of social laws in N(R) will typically be
exponential in the number of system states |S|. We thus require a
compact representation of valuation functions v.

The approach we propose in this paper is to represent a valuation
function via weighted formulae, in the style of marginal contribu-
tion nets and related formalisms [8, 9, 6, 14]. The idea is that a
valuation function v is additively decomposed into a set F of fea-
tures, where a feature is a pair (ϕ, x), with ϕ being a CTL formula

characterising the feature, and x ∈ R+ indicating the value of the
feature. A feature set F is a set of features:

F = {(ϕ1, x1), . . . , (ϕk, xk)}.
The valuation function vF induced by a feature set F is formally
defined as follows:

vF (K′) =
X

(ϕi,xi)∈F,K′|=ϕi

xi

Notice that there is no requirement for features in a feature set to
be mutually consistent. Of course, if two features are not mutu-
ally consistent (or cannot be simultaneously satisfied in the rele-
vant Kripke structure) then they cannot simultaneously be realised
by any social law.

EXAMPLE 1. A scientist is collecting data in the field, in a re-
mote location. She has a system for transmitting data back to her
lab, consisting of three agents: the sender at the remote location,
the receiver at the lab which receives the data, and the commu-
nication channel which transmits data between the sender and re-
ceiver. The system is not perfect. Whenever the sender is ready, it
is supposed to send a new message to the communication channel.
However, it may occasionally fail, and idle in the ready state. The
communication channel can deliver the message to the receiver im-
mediately or after a delay, but may occasionally idle. The receiver
is supposed to acknowledge the reception of a message immediately
to the sender (for simplicity we assume that acknowledgements are
transmitted safely). But like the sender, the receiver may occasion-
ally idle. The sender will not be ready again until it receives an
acknowledgment of the previous message. However, the communi-
cation channel may occasionally fail to deliver the message to the
receiver and erroneously give the sender an acknowledgment mes-
sage instead. The scenario is formalised in the model KT in Figure
1, where proposition ready means that the sender is in the ready
state, sent means that a message has been sent from the sender to
the communication channel, and rec that a message has been re-
ceived by the receiver but no acknowledgment has been sent yet.
Even with its shortcomings, the system works well most of the time,
but the scientist would still prefer if it worked perfectly all of the
time. The following are some of the properties she would like the
system to be guaranteed to have:

• ϕ1 = E♦(rec ∧ E♦ready). The system can transmit suc-
cessfully and get back to the ready state. This property does
not guarantee that the system always will transmit success-
fully, only that it is possible (if the property does not hold,
the system will never transmit successfully).

• ϕ2 = A (rec → A♦ready). It is always the case that
when a message is delivered, the sender will be able to trans-
mit again.

• ϕ3 = A A♦ready. The sender is ready infinitely often.

• ϕ4 = A A♦sent. A message is sent infinitely often.

• ϕ5 = A (sent → A♦rec). Every sent message will be
received.

• ϕ6 = A (ready → A♦(sent∧A♦ready)). Whenever the
sender is ready, it will always be able to eventually send and
after that go back to the ready state.

• ϕ7 = A (A♦(rec∧A♦ready)). It will always be the case
that a new message is eventually received and after that the
sender becomes ready again.

669

•s
ready

2

�� 0 �� •t
sent

38

��
70

��

0

��
•u

rec

4

��

0

����������

Property Benefit

ϕ1 110
ϕ2 15
ϕ3 15
ϕ4 18
ϕ5 10
ϕ6 23
ϕ7 25

Figure 1: Weighted Kripke structure KT and feature set FT of
the transmission example. s0 = s. Transitions are labeled by
the cost function. Some of the transitions have zero cost; for
example, it will cost nothing to disable the sender.

But she is not willing to improve the system at any cost. The fea-
ture set FT (Fig. 1) shows our scientist’s valuation (in North Pole
dollars) of each of the properties.

The cost of “engineering out” behaviours of the system is de-
scribed on the transitions in Figure 1. For example, the cost of
re-engineering the sender agent so that it will always work cor-
rectly is 2, and fixing the acknowledgment-without-delivery fault in
the communication channel will cost 70.

There are 42 different possible social laws for this model. Which
are optimal?

As we shall see in Section 4, finding optimal social laws is in
general computationally very hard. The available space here pro-
hibits an exhaustive description and comparison of all the 42 social
laws, but with the current feature set we are able to take a short-
cut. Observe, first, that it is necessary and sufficient for ϕ1 that the
transitions (s, t), (t, u) and (u, s) all are legal (not excluded by the
social law), and, second, that the benefit of ϕ1 alone exceeds the
benefit of all the other features combined. From these observations
we can see immediately that an optimal social law will never ex-
clude any of (s, t), (t, u) and (u, s). Thus, in this special case we
can restrict our attention to the 16 social laws that are subsets of
the other four transitions. These are described in Table 1. We see
that there are two optimal social laws:

• η9 = {(s, s), (u, u)}. The sender and the receiver behaves
correctly.

• η13 = {(s, s), (t, t), (u, u)}. The sender and the receiver be-
haves correctly, and one of the problems with the communi-
cation channel is removed.

Thus, it is optimal to change the behaviour of the sender and the
receiver, as is in addition fixing the idle problem in the communica-
tion channel. In any case, it is not optimal to fix the acknowledgment-
without-delivery fault in the communication channel. Many of the
other options are not only sub-optimal, but are also worse than not
implementing any social law at all (i.e., “implementing” η0).

3.1.1 Representation theorem
We say a feature set F = {(ϕ1, x1), . . . , (ϕk, xk)} represents a
valuation function v over K whenever v(K′) = vF (K′) for all K′ ∈
K̂. This raises a natural question: which valuation functions can be
represented as feature sets? Not all. As an example, let K be the
following structure:

•s0
p

		
�� •t

p

s, s t, t t, s u, u ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 Cost Benefit Utility

η0 - - - - + - - - - - - 0 110 110
η1 - - - + + + - - - - - 4 125 121
η2 - - + - + - - - - - - 70 110 40
η3 - - + + + + - - - - - 74 125 51
η4 - + - - + - - - - - - 38 110 72
η5 - + - + + + + - - - - 42 140 98
η6 - + + - + - - - + - - 108 120 12
η7 - + + + + + + - + - - 112 150 38
η8 + - - - + - - - - - - 2 110 108
η9 + - - + + + - + - - - 6 143 137
η10 + - + - + - - - - - - 72 110 38
η11 + - + + + + - + - - - 76 143 67
η12 + + - - + - - - - - - 40 110 70
η13 + + - + + + + + - + - 44 181 137
η14 + + + - + - - - + - - 110 120 10
η15 + + + + + + + + + + + 114 216 102

Table 1: The transmission example: social laws. For the tran-
sitions, “+” means that the transition is included in the social
law (i.e., that it is illegal according to the social law); “−” that
the transition is legal. For the formulae, “+” (“−”) means that
the formula is satisfied (not satisfied) if the social law is imple-
mented.

If v(K † {(s0, s0)}) �= v(K † {s0, t}), then there is no feature set
representing v, because K † {(s0, s0)} |= ϕ iff K † {(s0, t)} |= ϕ
for any ϕ. It is clear that if the valuation function gives a different
value for structures which cannot be discerned by logical formu-
lae, then it cannot be represented. But the answer to the question
is in fact that the valuation functions that can be represented are
exactly those that do not discern between bisimulation equivalent
structures.

THEOREM 1. Let K be a (finite) Kripke structure and v an eval-
uation function over K. There is a feature set F representing v iff
for all K1, K2 ∈ K̂:

K1 ≡ K2 ⇒ v(K1) = v(K2)

PROOF. For the “if” direction, let N = {η1, . . . , ηk} be a “rep-
resentative” set of social laws over K, such that for any social law
η over K there is a ηj ∈ N such that K † η ≡ K † ηj and such that
K † ηj �≡ K † ηl when j �= l (N is finite since K is). From the latter
condition (and the fact that if two structures are not bisimulation
equivalent they do not satisfy the same CTL formulae) we have that
for any j, l ≤ k, j �= l, there is a formula ϕj,l such that K † ηj |= ϕj,l

and K † ηl �|= ϕj,l. We define F = {(ϕ1, x1), . . . , (ϕk, xk)} as
follows, for 1 ≤ j ≤ k:

ϕj =
^

l �=j

ϕj,l xj = v(K † ηj)

It is easy to see that K † ηj |= ϕl iff j = l, and it follows that for
ηj ∈ N, v(K † ηj) = xj =

P

(ϕi,xi)∈F:K†ηj|=ϕi
xi = vF (ηj). For

η �∈ N, there is some ηj ∈ N such that K † η ≡ K † ηj, and it
follows that v(K † η) = v(K † ηj) = xj =

P

(ϕi,xi)∈F:K†ηj|=ϕi
xi =

P

(ϕi,xi)∈F:K†η|=ϕi
xi = vF (η).

The “only if” direction is immediate: if v(K1) �= v(K2) when
K1 ≡ K2, then K1 and K2 satisfy exactly the same formulae and v
cannot be represented.

Thus, as long as the valuation function does not discern between
social laws which give the same logical properties after implemen-
tation (not an unreasonable property), then it can be represented.

670

��

��

��

���

��

��

��

��

Figure 2: The reduction for Theorem 2.

4. COMPLEXITY
Observe that, given a Kripke structure K and a feature set F , com-
puting vF (K) can be done in polynomial time. We now have a
compact, expressive, and, we believe, quite natural representation
for valuation functions, and given this representation, the follow-
ing question arises: How hard is it to find an optimal social law? In
fact, we can precisely characterise the complexity of this problem
(see, e.g., [10] for a discussion of the complexity class FP

NP).

THEOREM 2. The OPTIMAL SOCIAL LAW problem for the fea-
ture set representation of valuation functions is FP

NP-complete.

PROOF. For membership in FP
NP, note that the associated de-

cision problem (does there exist a social law with utility at least
k) is NP-complete, since it subsumes the feasibility of social law
design [15, Theorem 2]. All optimization problems whose deci-
sion problem is in NP are in FP

NP [10, p.416]. For hardness, we
reduce the optimization problem MAX WEIGHT SAT [10, p.416].
An instance of MAX WEIGHT SAT is given by a set of proposi-
tional clauses ψ1, . . . , ψa, over Boolean variables x1, . . . , xb, to-
gether with integer weights w1, . . . , wa for each clause. The aim is
to find the valuation ξ ⊆ {x1, . . . , xb} that maximises the sum of
weights of clauses satisfied by the valuation. We construct a Kripke
structure K with l + 1 states, and a transition relation R defined as
in Figure 2: s0 is the only initial state, and inside each state we il-
lustrate the propositional variables true in that state (thus x1 is only
true in state s1, etc). Notice that no social law can forbid any of
the self loops (si, si), since this would violate the reasonableness
requirement for social laws. We create a feature set with a fea-
tures, one feature for every clause. For a clause ψi = {�i1 , . . . , �ij}
(where each � is either a propositional variable or the negation of a
propositional variable) with weight wi, we create a feature (ψ∗

i , wi)
with ψ∗

i defined as follows:

ψ∗
i =

_

�∈ψi

τ(�) τ(�) =

j

(E♦x) if � = x
(¬E♦x) if � = ¬x

We set costs c(s, s′) = 0 for all edges (s, s′). Now, any social
law will define a valuation under which a variable xi is considered
true if the arc (s0, si) is permitted under that social law. Clearly, any
optimal social law will correspond to a valuation that maximises the
total weight of clauses satisfied in the MAX WEIGHT SAT instance,
and vice versa.

This is of course a negative result: it basically says that in the
worst case we need a polynomial number of queries to an NP ora-
cle in order to compute the optimal social law. Can we do better?
Can we identify a class of instances of lower complexity? Let us
say an instance 〈K,F〉 of the optimal social law problem is simple
if all feature values in F are the same, and the cost c(s, s′) of every

arc (s, s′) is 0. Notice that even in this very restricted case, the de-
cision version of the problem is NP-complete, since it subsumes the
feasibility of social law design [15, Theorem 2]. However, we have
a somewhat more positive complexity result for the optimisation
problem:

THEOREM 3. The OPTIMAL SOCIAL LAW problem for simple
instances is FP

NP[log2 |F|]-complete.

PROOF. Notice that for simple instances, the optimal social law
η∗ is simply the one that maximises the number of features in F
that are realised. To show that the function is in FP

NP[log2 |F|],
we must show that it can be computed by a deterministic poly-
nomial time algorithm that is permitted log2 |F| queries to an NP

oracle. The idea is to use a binary search to find the exact value
for the number of features that can be realised. If |F| = c, then

we start by invoking with a bound � c+1
2

�
, and so on, until we con-

verge on the actual value. We will only require log2 |F| queries in
order to find the maximum number of features than can be realised.
For hardness, we reduce the problem MAX SAT, the unweighted
version of MAX WEIGHT SAT [10, p.423]. An instance of MAX

SAT is given by a set of clauses ψ1, . . . , ψa, over Boolean vari-
ables x1, . . . , xb, and we are simply asked to find the assignment
that maximises the number of clauses satisfied by the assignment.
The reduction is based on that of Theorem 2, except that we simply
set all feature weights to 1, and we need to change the definition
of ψ∗ so that no feature is satisfied in the initial Kripke structure.
We can do this by creating another state s′, with arcs (s0, s′) and
(s′, s′), a dummy variable d true in state s′, and finally conjoining
the formula (¬E �d) to feature formulae.

The assumption that all costs are 0, of course, is rather strong.
Let us say an instance 〈K,F〉 of the optimal social law problem is
homogeneous if all if all feature values in F are the same and all
costs are the same. We have:

THEOREM 4. The OPTIMAL SOCIAL LAW problem for homo-
geneous instances is in FP

NP[|R| log2 |F|] (where R is the transition
relation in the input instance).

PROOF. Let 〈K,F〉 be the homogeneous problem instance, let x
be the edge weight on the input instance, and y be the cost weight.
Now, define a simple instance 〈K′,F〉 that is identical to 〈K,F〉
except that all edge costs are 0. We use the fact that, given some
natural number f , 1 ≤ f ≤ |R| and simple instance 〈K′,F〉, the
problem of computing the optimal social law η∗ such that |η∗| = f
for a simple instance is FP

NP[log |F|]-complete, by essentially the
same argument as in Theorem 3. Now, for each f , 1 ≤ f ≤ |R|, we
ask for the optimal social law containing exactly f edges, giving
us a sequence of social laws η∗

1 , . . . , η∗
f ; so now we simply find

which of these maximises utility. The overall optimal social law for
〈K,F〉 will be in this sequence. Since f = |R|, the overall number
of queries to the NP oracle required is thus |R| log2 |F|.
4.1 Tractable Instances
In this section we discuss instances of the optimal social law prob-
lem which can be easily solved.

Dichotomous Valuations: Consider the case that the designer of
the system can identify a set of “bad” states, and that his (only) goal
is to prevent the system from going into a bad state without exclud-
ing any of the “good” states (i.e., the states that are not “bad”)1.

1The notion of good/bad, or red/green, states can be seen as an
alternative, or complement, to the notion of legal/illegal transitions
for modelling normative systems [12].

671

Formally, given a weighted Kripke structure K, we say that a valu-
ation function v is dichotomous if there is a set of states B ⊆ S (the
“bad” states) such that for any K′ (recall that rch(s) denotes the set
of states reachable from s)

v(K′) =

j

a rch(s0) = S \ B
0 otherwise

for some value a ≥ 0, effectively assigning the benefit a to any
social law excluding exactly the bad states B and zero benefit to all
other (not eliminating all “bad” states, or eliminating some of the
“good” states, or both). In the OPTIMAL SOCIAL LAW problem
for dichotomous valuations, we assume that the valuation function
v is represented by the set B and the value a ≥ 0.

THEOREM 5. The OPTIMAL SOCIAL LAW problem for dichoto-
mous valuations can be decided in polynomial time.

PROOF. Let K, B, a be given, and let B = S \ B. Let η′ =
{(s, t) ∈ R : s ∈ B, t ∈ B}. Define a social law η̂ over K:

η̂ =

j

η′ if η′ ∈ N(R) and u(η′, K, v) > 0
∅ otherwise

It is immediate from the definition that η̂ ∈ N(R). We argue that η̂
is an optimal social law. Assume otherwise, i.e., that there exists a
η ∈ N(R) such that u(η, K, v) > u(η̂, K, v). We first argue that

rch(s0, R \ η) = B ⇒ η′ ⊆ η. (1)

If there is a (s, s′) ∈ R such that (i) (s, s′) ∈ η′ and (ii) (s, s′) �∈ η,
then s ∈ B by (i) and if s ∈ rch(s0, R \ η) then also s′ ∈ rch(s0, R \
η) by (ii) – but s′ �∈ B by (i).

The main argument is by cases in the definition of η̂; η′ ∈ N(R)
and u(η′, K, v) > 0. Assume the first case. Since the costs are non-
negative, u(η′, K, v) > 0 entails that v(K † η′) = a and a > 0, and
from u(η, K, v) > u(η̂, K, v) it follows that also v(K†η) = a. Thus,
P

(s,s′)∈η′ c(s, s′) >
P

(s,s′)∈η c(s, s′). It follows that η′ �⊆ η,

and thus that rch(s0, R \ η) �= B by (1). But from the facts that
v(K † η) = a and that a > 0 it follows that rch(s0, R \ η) = B; a
contradiction.

Assume now the second case in the definition of η̂. η̂ = ∅.
We have that (a) u(η, K, v) = v(K † η) − P

(s,s′)∈η c(s, s′) >

u(η̂, K, v) = v(K), and the only possibility is that v(K † η) = a
and a > 0, and it follows that rch(s0, R \ η) = B and from (1)
that η′ ⊆ η. First assume that η′ �∈ N(R). That means that
R \ η′ is not total, i.e., that there is a state s ∈ B such that for
all (s, t) ∈ R, t ∈ B. It cannot be the case that rch(s0, R) =
B, because s ∈ B and every successor of s is not in B. Thus,
v(K) = 0, and v(K † η) >

P

(s,s′)∈η c(s, s′). The only possi-

bility is that v(K † η) = a, and rch(s0, R \ η) = B. Since s ∈ B
and t �∈ B for every (s, t) ∈ R, we must have that (s, t) ∈ η for
every (s, t) ∈ R – but then η is not total, a contradiction. Sec-
ond, assume that η′ ∈ N(R) and u(η′, K, v) ≤ 0, i.e., that (b)
v(K † η′) ≤ P

(s,s′)∈η′ c(s, s′). By the fact that η′ ⊆ η we have

that (c)
P

(s,s′)∈η′ c(s, s′) ≤ P

(s,s′)∈η c(s, s′). It follows from (a)

that v(K †η)− v(K) >
P

(s,s′)∈η c(s, s′), and thus from (b) and (c)

that v(K †η)− v(K) > v(K †η′). Since v(K †η) = a, the only pos-
sibility is that v(K † η′) = v(K) = 0. But since rch(s0, R \ η′) = B
(see start of the second case), that means that a = 0. But that
contradict the fact that a = v(K † η) > v(K † η′).

It is easy to see that η′ can be constructed in O(|R| × |B|) time,
and η′ ∈ N(R) checked in O(|S| × |R| × |B|) time. u(η′, K, v) is
found by constructing rch(s0, R\η′) and

P

(s,s′)∈η′ c(s, s′). rch(s0, R\
η′) can be constructed in polynomial time by unravelling the Kripke
structure to a tree while only expanding each state once.

Composite Valuations: A very simple special case is when the
benefit of a social law can be seen as being composed of, or being
the sum of, the benefit of removing each transition in the social law
(a positive correspondent to the cost function), i.e., when there is a
function v′ : R → R+ such that for all η

v(K † η) =
X

(s,s′)∈η

v′(s, s′)

We call such valuation functions v composite valuations. We have
that u(η, K, v) =

P

(s,s′)∈η(v′(s, s′)−c(s, s′)). Note that v′(s, s′)−
c(s, s′) might be negative. If negative costs were allowed (which
they are not in our general setting), this setting would be equivalent
to one without a valuation function (v(K′) = 0 for all K′). The
OPTIMAL SOCIAL LAW problem for composite valuations takes
as input K and the function v′ : R → R+. It is easy to see that:

THEOREM 6. The OPTIMAL SOCIAL LAW problem for com-
posite valuations can be decided in polynomial time.

5. ILP FOR OPTIMAL SOCIAL LAWS
Finding an optimal social law is an NP-hard optimisation problem.
This suggests that approaches for solving such optimisation prob-
lems may usefully be applied to the problem of synthesising opti-
mal social laws. Integer programming is one of the most successful
and widely-used approaches to solving computationally hard opti-
misation problems. In this section, we will show the optimal so-
cial law problem with the feature set representation can be solved
through integer programming. Formally, given an instance of the
OPTIMAL SOCIAL LAW problem, we produce an Integer-Linear
Program (ILP) such that solutions to the ILP define solutions to the
given OPTIMAL SOCIAL LAW instance.

Before we start, we must state some assumptions and give some
auxiliary definitions. One assumption is that all CTL formulae given
in the input instance have been re-written so that the only Boolean
connectives used are ¬ and ∨, and the only temporal operators are
E �, EU , and E . We emphasise that these connectives provide
a complete basis for CTL, and so this assumption does not in any
way represent a restriction on input instances; but it greatly simpli-
fies subsequent presentation.

Intuitively, the ILP we define labels states in the Kripke structure
with the formulae that are true at these states. The ILP construction
we use to label states with the formulae true in those states is de-
rived from the semantics of CTL formulae. The basis of the labeling
is provided by the valuation function π, which tells us what atomic
propositions are true in what states; the labeling for a formula ϕ in
a state s is then obtained from the labeling of sub-formulae of ϕ in
s and other states. The key idea in the construction is show how
this labeling can be encoded in a ILP. One issue is that of deal-
ing with the temporal connectives. The idea we use is to exploit
the fixpoint nature of this operators. For example, the following is
a well-known equivalence in CTL, which tells us that E(ψ U χ) is
defining a least fixpoint [7, p.1040]:

E(ψ U χ) ↔ (χ ∨ (ψ ∧ E �E(ψ U χ))).

The labeling of formulae E(ψ U χ) in a state s in the ILP is thus
derived from the labeling of the formulae χ and ψ ∧ E �E(ψ U χ)
in state s.

Let us denote the closure of a CTL formula ϕ by cl(ϕ), and define
the function cl(· · ·) as follows:

cl(ϕ) = {ϕ} ∪ cl0(ϕ)

672

maximize:
X

(ϕi,xi)∈F
τ(ϕi, s0) · xi −

X

(s,s′)∈R

η(s, s′) · c(s, s′) (2)

subject to constraints:

τ(ψ, s) ∈ {0, 1}
∀ψ ∈ cl(F), s ∈ S (3)

η(s, s′) ∈ {0, 1}
∀(s, s′) ∈ R (4)

X

s′∈next(s)

`

1 − η(s, s′)
´ ≥ 1

∀s ∈ S (5)

τ(p, s) =

j

1 if p ∈ π(s)
0 otherwise

∀p ∈ Φ ∩ cl(F), s ∈ S (6)

τ(¬ψ, s) = 1 − τ(ψ, s)

∀¬ψ ∈ cl(F), s ∈ S (7)

τ(ψ ∨ χ, s) ≤ τ(ψ, s) + τ(χ, s)

∀ψ ∨ χ ∈ cl(F), s ∈ S (8)

τ(ψ ∨ χ, s) ≥ τ(ψ, s)

∀ψ ∨ χ ∈ cl(F), s ∈ S (9)

τ(ψ ∨ χ, s) ≥ τ(χ, s)

∀ψ ∨ χ ∈ cl(F), s ∈ S (10)

Figure 3: ILP for the OPTIMAL SOCIAL LAW problem (1/4).

where

cl0(ϕ) =

8

<

:

cl(ψ) ∪ cl(χ) if ϕ = ψ ∨ χ or ϕ = E(ψ U χ)
cl(ψ) if ϕ = ¬ψ or ϕ = E �ψ or ϕ = E ψ
{ϕ} if ϕ ∈ Φ.

Where F = {(ϕ1, x1), . . . , (ϕk, xk)} is a feature set, we let:

cl(F) = cl(ϕ1) ∪ · · · ∪ cl(ϕk).

Intuitively, cl(F) is the set of formulae whose truth or falsity we
must label against states in the ILP.

The ILP we produce from an OPTIMAL SOCIAL LAW instance
〈K,F〉 is defined in Figures 3–6. Let soln(K,F) denote the set of
solutions for the ILP defined in Figures 3–6 for OPTIMAL SOCIAL

LAW instance 〈K,F〉. Now, solutions σ ∈ soln(K,F) define val-
ues for the variables η(s, s′) for all transitions (s, s′) in K. Where
σ ∈ soln(K,F), define a social law ησ as follows: (s, s′) ∈ ησ iff
η(s, s′) = 1. We then have the following:

THEOREM 7. The ILP defined in Figures 3–6 correctly com-
putes solutions to the OPTIMAL SOCIAL LAW problem. Formally,
let 〈K,F〉 be an instance of the OPTIMAL SOCIAL LAW problem.
Then σ ∈ soln(K,F) iff the social law ησ is a solution to the OP-
TIMAL SOCIAL LAW problem 〈K,F〉.

PROOF. Let 〈K,F〉 and σ ∈ soln(K,F) be as stated in the
proposition. The ILP makes use of the following key variables:

• For each ϕ ∈ cl(F) and state s in K, the variable τ(ϕ, s) ∈
{0, 1} will indicate whether formula ϕ is true (τ(ϕ, s) = 1)
or false (τ(ϕ, s) = 0) in state s of K † ησ .

d(ψ, s, s′) ∈ {0, 1}
∀E �ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (11)

d(ψ, s, s′) ≥ τ(ψ, s′) − η(s, s′)

∀E �ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (12)

d(ψ, s, s′) ≤ τ(ψ, s′)

∀E �ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (13)

d(ψ, s, s′) ≤ 1 − η(s, s′)

∀E �ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (14)

τ(E �ψ, s) ≥ d(ψ, s, s′)

∀E �ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (15)

τ(E �ψ, s) ≤
X

s′∈next(s)

d(ψ, s, s′)

∀E �ψ ∈ cl(F), s ∈ S (16)

Figure 4: ILP for the OPTIMAL SOCIAL LAW problem (2/4).

• For each edge (s, s′) in the transition relation of K, the vari-
able η(s, s′) ∈ {0, 1} will be used to indicate whether the
edge (s, s′) is forbidden in the optimal social law (η(s, s′) =
1) or not forbidden (η(s, s′) = 0) in ησ .

Notice that the variables τ(ϕ, s) and η(s, s′) take values from {0, 1}.
In the objective function, we also use the edge costs c(s, s′) from
the Kripke structure and feature values xi from the feature set F :
these are constants in the ILP, so linearity is not violated.

First, we note that the social law ησ defined by σ is indeed a
social law (the “coherence” requirement): this is by constraint (5).

Next, we claim that the variables τ(· · ·) correctly label states
with the formulae that are true in those states in the Kripke structure
K † ησ , i.e., ∀ϕ ∈ cl(F) and s ∈ S we have τ(ϕ, s) = 1 iff K †
ησ, s |= ϕ. The proof is by induction on the structure of formulae.
The inductive base is for atomic propositions Φ, and follows from
constraint (6). For the inductive step, we reason by cases:

• ϕ = ¬χ: from constraint (7).

• ϕ = ψ∨χ: from constraints (8)–(10). Constraint (8) ensures
that if both disjuncts are false in state s, then τ(ψ∨χ, s) = 0,
while constraints (9) and (10) ensure that if either disjunct is
true in state s, then τ(ψ ∨ χ, s) = 1.

• ϕ = E �ψ: from constraints (11)–(16). These constraints
use subsidiary variables d(ψ, s, s′), such that d(ψ, s, s′) = 1
iff τ(ψ, s′) = 1 and η(s, s′) = 0.

• ϕ = E(ψ U χ): from constraints (17)–(27). These con-
straints make use of subsidiary variables e(ψ, χ, s) ∈ {0, 1}
and f (ψ, χ, s, s′) ∈ {0, 1}. These variables are defined s.t.:

– e(ψ, χ, s) = 1 iff K † ησ, s |= ψ ∧ E �E(ψ U χ): con-
straints (25)–(27)

– f (ψ, χ, s, s′) = 1 iff both K † ησ, s′ |= E(ψ U χ) and
η(s, s′) = 0: constraints (22)–(24).

• ϕ = E ψ: from constraints (28)–(37). These constraints
make use of subsidiary variables g(ψ, s) ∈ {0, 1} and h(ψ, s, s′) ∈
{0, 1}. These variables are defined s.t.:

– g(ψ, s) = 1 iff K † ησ, s |= E �E ψ: constraints
(36)–(37)

– h(ψ, s, s′) = 1 iff both K†ησ, s′ |= E ψ and η(s, s′) =
0: constraints (33)–(35).

Finally, we claim that the social law ησ maximises utility: this fol-
lows from the objective function (2).

673

e(ψ, χ, s) ∈ {0, 1} ∀E(ψ U χ) ∈ cl(F), s ∈ S (17)

f (ψ, χ, s, s′) ∈ {0, 1}
∀E(ψ U χ) ∈ cl(F), s ∈ S, s′ ∈ next(s)(18)

τ(E(ψ U χ), s) ≥ τ(χ, s)

∀E(ψ U χ) ∈ cl(F), s ∈ S (19)

τ(E(ψ U χ), s) ≥ e(ψ, χ, s)

∀E(ψ U χ) ∈ cl(F), s ∈ S (20)

τ(E(ψ U χ), s) ≤ τ(ψ, s) + e(ψ, χ, s)

∀E(ψ U χ) ∈ cl(F), s ∈ S (21)

f (ψ, χ, s, s′) ≥ τ(E(ψ U χ), s′) − η(s, s′)

∀E(ψ U χ) ∈ cl(F), s ∈ S, s′ ∈ next(s)(22)

f (ψ, χ, s, s′) ≤ τ(E(ψ U χ), s′)

∀E(ψ U χ) ∈ cl(F), s ∈ S, s′ ∈ next(s)(23)

f (ψ, χ, s, s′) ≤ 1 − η(s, s′)

∀E(ψ U χ) ∈ cl(F), s ∈ S, s′ ∈ next(s)(24)

e(ψ, χ, s) ≤ τ(ψ, s)

∀E(ψ U χ) ∈ cl(F), s ∈ S (25)

e(ψ, χ, s) ≤
X

s′∈next(s)

f (ψ, χ, s, s′)

∀E(ψ U χ) ∈ cl(F), s ∈ S, s′ ∈ next(s)(26)

e(ψ, χ, s) ≥ 1 − ((1 − τ(ψ, s)) + (1 − (f (ψ, χ, s, s′))))

∀E(ψ U χ) ∈ cl(F), s ∈ S, s′ ∈ next(s)(27)

Figure 5: ILP for the OPTIMAL SOCIAL LAW problem (3/4).

6. CONCLUSIONS AND FURTHER WORK
In this paper, we have modelled the trade-offs between the costs
and benefits of implementing a social law, and we have formulated
the problem of designing an optimal social law as an optimisation
problem. We have characterised the computational complexity of
the problem, and have shown how the optimisation problem can
be solved using integer linear programming, an approach that has
been successfully and widely used to tackle computationally hard
problems in other domains. We have also identified some tractable
instances, and characterised the expressiveness of using a compact
logical representation of social law features.

An opportunity for further research is to investigate the relation-
ship between particular classes of weighted Kripke structures and
feature sets on the one hand, and known special types of integer
programming problems on the other. In particular, we are inter-
ested in whether there are interesting classes that correspond to in-
teger programming problems known to be efficiently solvable [11].

7. REFERENCES
[1] T. Ågotnes, W. van der Hoek, J. A. Rodriguez-Aguilar,

C. Sierra, and M. Wooldridge. On the logic of normative
systems. In Proceedings of IJCAI-07, 2007.

[2] T. Ågotnes, W. van der Hoek, and M. Wooldridge. Normative
system games. In Proceedings of AAMAS-07, 2007.

[3] G. Boella and L. Torre. Delegation of power in normative
multiagent systems. In Proceedings of DEON-06, 2006.

[4] G. Boella and L. Torre. Institutions with a hierarchy of
authorities in distributed dynamic environments. Artificial
Intelligence and Law, 16(1):53–71, 2008.

g(ψ, s) ∈ {0, 1} ∀E ψ ∈ cl(F), s ∈ S (28)

h(ψ, s, s′) ∈ {0, 1}
∀E ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (29)

τ(E ψ, s) ≤ τ(ψ, s)

∀E ψ ∈ cl(F), s ∈ S (30)

τ(E ψ, s) ≤ g(ψ, s)

∀E ψ ∈ cl(F), s ∈ S (31)

τ(E ψ, s) ≥ 1 − ((1 − τ(ψ, s)) + (1 − g(ψ, s)))

∀E ψ ∈ cl(F), s ∈ S (32)

h(ψ, s, s′) ≤ 1 − η(s, s′)

∀E ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (33)

h(ψ, s, s′) ≤ τ(E ψ, s′)

∀E ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (34)

h(ψ, s, s′) ≤ 1 − (η(s, s′) + (1 − τ(E ψ, s′)))

∀E ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (35)

g(ψ, s) ≤
X

s′∈next(s)

h(ψ, s, s′)

∀E ψ ∈ cl(F), s ∈ S (36)

g(ψ, s) ≥ h(ψ, s, s′)

∀E ψ ∈ cl(F), s ∈ S, s′ ∈ next(s) (37)

Figure 6: ILP for the OPTIMAL SOCIAL LAW problem (4/4).

[5] M. C. Browne, E. M. Clarke, and O. Grümberg.
Characterizing finite Kripke structures in propositional
temporal logic. Theoretical Computer Science, 59, 1988.

[6] E. Elkind, L. A. Goldberg, P. Goldberg, and M. Wooldridge.
A tractable and expressive class of marginal contribution nets
and its applications. Mathematical Logic Quarterly,
55(4):362–376, 2009.

[7] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science
Volume B: Formal Models and Semantics, pages 996–1072.
Elsevier Science Publishers B.V.: Amsterdam, 1990.

[8] S. Ieong and Y. Shoham. Marginal contribution nets: A
compact representation scheme for coalitional games. In
Proceedings of Electronic Commerce (EC-05), 2005.

[9] J. Lang, U. Endriss, and Y. Chevaleyre. Expressive power of
weighted propositional formulas for cardinal preference
modelling. In Proceedings of KR-06, 2006.

[10] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley: Reading, MA, 1994.

[11] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization. Prentice Hall International, England, 1982.

[12] M. Sergot and R. Craven. The deontic component of action
language nc+. In L. Goble and J.-J. Meyer, editors, Deontic
Logic and Artificial Normative Systems, LNCS 4048, 2006.

[13] Y. Shoham and M. Tennenholtz. On the synthesis of useful
social laws for artificial agent societies. In Proc. of AAAI-92.

[14] J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang.
Representing utility functions via weighted goals.
Mathematical Logic Quarterly, 55(4):341–361, 2009.

[15] W. van der Hoek, M. Roberts, and M. Wooldridge. Social
laws in alternating time: Effectiveness, feasibility, and
synthesis. Synthese, 156(1):1–19, 2007.

674

